
CS103 Handout 43

Spring 2017 May 31, 2017

Practice Final Exam II

We strongly recommend that you work through this exam under realistic conditions rather
than just flipping through the problems and seeing what they look like. Setting aside three
hours in a quiet space with your notes and making a good honest effort to solve all the prob-
lems is one of the single best things you can do to prepare for this exam. It will give you
practice working under time pressure and give you an honest sense of where you stand and
what you need to get some more practice with.

This practice final exam is a (slightly modified) version of the final exam we gave out in Winter
2016. The exam policies are the same for the midterms – closed-book, closed-computer, limited
note (one double-sided sheet of 8.5” × 11” paper decorated however you'd like).

You have three hours to complete this exam. There are 47 total points.

Question Points Graders

(1) Logic and Binary Relations / 6

(2) Sets and Functions / 5

(3) Induction and Graphs / 6

(4) Regular and Context-Free Languages / 12

(5) R and RE Languages / 14

(6) P and NP Languages / 4

/ 47

2 / 15

Problem One: Logic and Binary Relations (6 Points)
The axiom of choice is an axiom of set theory that can be stated as follows:

If R is an equivalence relation over A, then there is a set S ⊆ A with the following property:
for any a ∈ A, there is exactly one b ∈ S such that aRb.

This question explores a few properties of the axiom of choice.

i. (3 Points) To begin with, what does the axiom of choice look like in first-order logic? Let's
assume that R is an equivalence relation over the set A. Given the predicates

x ∈ y, which states that x is an element of y;
Set(S), which states that S is a set; and
xRy, which states that the binary relation R holds between x and y,

along with the constant symbol A, write a statement in first-order logic that says “there is a
set S ⊆ A with the following property: for any a ∈ A, there is exactly one b ∈ S such that
aRb.” Your translation can assume that R is an equivalence relation over the set A and you
don't need to explicitly state that.

3 / 15

As a refresher from the previous page, the axiom of choice states that

if R is an equivalence relation over A, then there is a set S ⊆ A with the following property:
for any a ∈ A, there is exactly one b ∈ S such that aRb.

If R is an equivalence relation over a set A, recall that for any a ∈ A, the equivalence class of a, de-
noted [a]R, is the set

[a]R = { b ∈ A | aRb }

ii. (3 Points) Let R be an arbitrary equivalence relation over a set A and let S be one of the
sets guaranteed by the axiom of choice. Prove that every equivalence class of A contains ex-
actly one element of S. As a reminder, to prove that there is exactly one object satisfying
some property, you need to prove that there is at least one object with that property and at
most one object with that property.

4 / 15

Problem Two: Sets and Functions (5 Points)
Below is a series of statements. For each statement, decide whether it's true or false. No justifica-
tion is required, and there is no penalty for an incorrect guess.

i. (1 Point) For any sets A and B, if A ∈ B, then A ⊆ ℘(B).

 ☐ True ☐ False

ii. (1 Point) For any sets A and B, if A ⊆ B, then A ∈ ℘(B).

 ☐ True ☐ False

iii. (1 Point) For any set A, there is a set B where A ⊆ B.

 ☐ True ☐ False

iv. (1 Point) There is a set B where, for any set A, we have A ⊆ B.

 ☐ True ☐ False

v. (1 Point) For any sets A and B where |A| = |B|, every function f : A → B is a bijection.

 ☐ True ☐ False

5 / 15

Problem Three: Induction and Graphs (6 Points)
A tournament is a directed graph where, for every distinct pair of nodes, there is exactly one edge
between those nodes. We can think of a tournament as a way of representing the result of a contest
in which each player plays exactly one game against each other player and there are no ties. A tour-
nament winner is a player in a tournament who, for each other player, either won her game against
that player, or won a game against a player who in turn won his game against that player (or both).

Now, let's suppose that we start with a tournament and remove from it all the players except the
winners in the tournament. For example, given the tournament on the left (with the winners high-
lighted), we might then form the subtournament on the right:

F

E

A

B

C

D

D

A

F

E

B

C

Now, let's focus on the four-player subtournament we've discovered this way. Notice that while
player F was a winner in the original tournament, player F is no longer a winner in this remaining
subtournament because she didn't beat player B and didn't beat anyone who beat B. (Although in
the original tournament F beat A and A beat B, player A is no longer present in this reduced tourna-
ment). However, the other three players (B, C, and E) are all still winners in this smaller subtourna-
ment. We can therefore think about once again removing from this subtournament all the players
who are no longer winners. If we do, we get this subtournament:

D

A

F

E

B

C

F

D

A

E

B

C

At this point, we can see that the players B, C, and E are all winners of this final tournament, so if
we were to delete from this subtournament all players who aren't winners, we'd end up with exactly
the same subtournament we started with.

Since the players B, C and E were winners in the original tournament, and also winners in the tour-
nament formed by removing all non-winners from the original tournament, and also winners of the
tournament formed by removing all non-winners from that tournament, they must have done ex-
tremely well in the original tournament! Let's introduce some terminology to capture this idea.

6 / 15

Given a tournament T, we'll say that the winner subtournament of a tournament T, denoted W(T),
is the tournament formed by starting with T and removing from it all the players who aren't win-
ners. A tournament T where W(T) ⊊ T is called a reducible tournament (all reducible tournaments
must have at least one player in them who isn't a winner), and a tournament T where W(T) = T is
called an irreducible tournament (every player in an irreducible tournament is a winner.)

Finally, we'll (inductively) say that a player p is grandmaster of T if p is a winner in T and

• T is irreducible, or

• T is reducible and p is a grandmaster of W(T).

Intuitively, a grandmaster is a player who's a winner in T, a winner in W(T), a winner in W(W(T)),
a winner in W(W(W(T))), etc. In the example tournament T given on the previous page, players
B, C, and E are all grandmasters of T. Player A isn't a grandmaster of T because player A isn't a
winner in T, and player F isn't a grandmaster of T because, while she was a winner in T, she wasn't
a winner in W(T).

Let T be an arbitrary tournament with n ≥ 1 players and let p be an arbitrary player in T. Prove by
complete induction on the number of players in T that if p is the only grandmaster in T, then p is
the only winner in T. Depending on your proof strategy, you may find it useful to use the following
theorems in the course of your proof.

Theorem A: If p is a player in a tournament and p lost a game, then at least one of
the players who beat p is a tournament winner.

Theorem B: If p is a player in a tournament, then p is the only winner if and only if
p won all her games.

7 / 15

(Extra space for your answer to Problem Three, if you need it.)

8 / 15

Problem Four: Regular and Context-Free Languages (12 Points)
On Problem Set Six, we had you design a number of DFAs, NFAs, and regular expressions, which
we then graded using an autograder one of the former CS103 TAs put together. You might be won-
dering how exactly that autograder works. In this problem, you'll get an answer to that question!

Let's suppose that you have two DFAs D₁ and D₂. It's possible to build a new DFA called the XOR
automaton of D₁ and D₂, denoted D₁ × D₂, that simulates the execution of D₁ and D₂ simultane-
ously. While there are many different ways to define the XOR automaton, one simple definition in-
volves a minor variation on the subset construction.

Given two DFAs D₁ and D₂, you can construct D₁ × D₂ as follows:

1. Add a new start state qs to the automaton with ε-transitions to the start states of D₁ and D₂.

2. Perform the subset construction on the resulting NFA to produce a new DFA.

3. For each state in the resulting DFA, mark that state as an accepting state if it corresponds to
a set containing either (1) an accepting state in D₁ and a rejecting state in D₂, or (2) a reject-
ing state in D₁ and an accepting state in D₂. Then, mark each other state as rejecting. The
resulting automaton is D₁ × D₂.

The automaton D₁ × D₂ has the useful property that every string it accepts is accepted by exactly
one of D₁ and D₂. It's therefore ideal for use in an autograder. We can take a student submission as
D₁, our reference solution as D₂, then build D₁ × D₂. If D₁ × D₂ accepts any strings, then we know
that the submitted DFA D₁ is incorrect because it either rejects something it should have accepted
or accepts something it should have rejected.

i. (4 Points) Apply the above algorithm to the two DFAs given below (each of which has al-
phabet {a, b}) and give us an example of a string accepted by exactly one of D₁ and D₂.
Give the resulting DFA as a transition table in the space provided. To be nice, we've given
you exactly the number of rows you'll need.

q₀ q₁
a

a

start
b

b

q₂ q₃Σstart

q₄

ΣΣ

q₁

q₃

a b

String accepted by exactly one of D₁ and D₂: _______________________

9 / 15

Let Σ = {a, b, c} and consider the following language L₁ over Σ:

L₁ = { w ∈ Σ* | no two consecutive characters in w are the same }

For example, abcaba ∈ L₁, baba ∈ L₁, a ∈ L₁, and ε ∈ L₁, but abba ∉ L₁, acbacc ∉ L₁, and aa ∉ L₁.

ii. (4 Points) Write a context-free grammar for L₁.

10 / 15

Let Σ = {a, b}. Consider the following language L₂ over Σ:

L₂ = { anbm | m, n ∈ ℕ and m ≤ 2n }

For example, aa ∈ L₂, aab ∈ L₂, aabb ∈ L₂, aabbb ∈ L₂, and aabbbb ∈ L₂, but aabbbbb ∉ L₂.

iii. (4 Points) Prove that L₂ is not a regular language. In your proof, if you claim that a partic-
ular string does or does not belong to L₂, please be as specific as possible in your justifica-
tion; the requirements on strings in L₂ are a bit harder to determine from context than for
some of the other languages we've encountered in the past.

11 / 15

Problem Five: R and RE Languages (14 Points)
In lecture, we proved that LD is not an RE language using diagonalization. How else might we
prove a language is not in RE? Using the Double Verification problem from Problem Set Nine,
there's an elegant way to discover non-RE languages by starting with recognizable but undecidable
problems.

i. (3 Points) Let L be a language in RE – R. Prove that L ∉ RE.

12 / 15

In lecture, we proved that the problem of checking whether a program is a secure voting machine is
undecidable. This result is a special case of a broader theorem that's the focus of this problem.

Let L ∈ R be an arbitrary decidable language. Consider the following language Rec(L):

Rec(L) = { ⟨M⟩ | M is a TM and ℒ(M) = L }.

In other words, Rec(L) is the language of all TMs whose language is precisely the decidable lan-
guage L. The two problems described above are just special cases of Rec(L) for particular choices
of L.

ii. (5 Points) Prove that if L is any decidable language, then Rec(L) ∉ R. As a hint, if Rec(L)
is decidable, then you can write a method that represents a decider for Rec(L):

bool recognizesL(string program)

Similarly, since L is decidable, you can write a method representing a decider for L:

bool isInL(string w)

Then, consider what the following program does:

 int main() {
 string me = mySource();
 string input = getInput();

 bool answer = isInL(input);
 if (recognizesL(me)) {

 answer = !answer;
 }

 if (answer) {
 accept();
 } else {
 reject();
 }

}

13 / 15

(Extra space for your answer to Problem Five, Part (ii), if you need it.)

14 / 15

iii. (6 Points) Below is a Venn diagram showing the overlap of different classes of languages
we've studied so far. We have also provided you a list of numbered languages. For each of
those languages, draw where in the Venn diagram that language belongs. As an example,
we've indicated where Language 1 and Language 2 should go. No proofs or justifications
are necessary, and there is no penalty for an incorrect guess.

RERREG

ALL

1

2

1. Σ*

2. LD

3. { w ∈ {a, b, c, …, z, A, B, C, …, Z, 0, 1, …, 9}* | w contains at least two lower-case letters,
at least two upper-case letters, and a digit; w doesn't end with a digit; and |w| ≥ 8 }

4. { ⟨P⟩ | P is a syntactically correct Java program } (If you don't know Java, don't worry! The
answer is the same if you replace Java with any of C, Python, JavaScript, C#, Visual Basic,
or Scheme, so feel free to reason about those languages instead.)

5. {⟨UTM⟩} (As a reminder, UTM is the universal Turing machine.)

6. ℒ(UTM)

7. The complement of language (6)

8. { ⟨M, w⟩ | M is a TM, w is a string, and UTM rejects ⟨M, w⟩ }

15 / 15

Problem Six: P and NP Languages (4 Points)
Let's suppose that someone does manage to prove that P ≠ NP. In that case, the landscape of P,
NP, and the languages outside of NP looks something like this:

P NPC

NP

ALL

Note that there are four regions in this Venn diagram: P, NP, NPC, and ALL.

i. (2 Points) Let L be a language where SAT ≤p L. Assuming P ≠ NP, where could L be in
the above Venn diagram? Indicate your answer by writing a (1) in each possible location.
No proof or justification is necessary.

ii. (2 Points) Let L be a language where L ≤p SAT. Assuming P ≠ NP, where could L be in
the above Venn diagram? Indicate your answer by writing a (2) in each possible location.
No proof or justification is necessary.

We have one final question for you: do you think P = NP? Let us know in the space below. There
are no right or wrong answers to this question – we're honestly curious to hear your opinion!

☐ I think P = NP ☐ I think P ≠ NP

